Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.634
1.
Int J Biol Sci ; 20(7): 2476-2490, 2024.
Article En | MEDLINE | ID: mdl-38725863

Peristaltic movements in gut are essential to propel ingested materials through the gastrointestinal tract. Intestinal resident macrophages play an important role in this physiological function through protecting enteric neurons. However, it is incompletely clear how individuals maintain the homeostasis of gut motility. Here we found that NLRP3 is a critical factor in controlling loss of muscularis resident macrophages (MMs), and demonstrate that MMs are involved in the homeostasis of excitatory neurons such as choline acetyltransferase (ChAT)+ and vesicular glutamate transporter 2 (VGLUT2)+ but not inhibitory neuronal nitric oxide synthase (nNOS)+ neurons. NLRP3 knockout (KO) mice had enhanced gut motility and increased neurons, especially excitatory ChAT+ and VGLUT2+ neurons. Single cell analyses showed that there had increased resident macrophages, especially MMs in NLRP3 KO mice. The MM proportion in the resident macrophages was markedly higher than those in wild-type (WT) or caspase 1/11 KO mice. Deletion of the MMs and transplantation of the NLRP3 KO bone marrow cells showed that survival of the gut excitatory ChAT+ and VGLUT2+ neurons was dependent on the MMs. Gut microbiota metabolites ß-hydroxybutyrate (BHB) could promote gut motility through protecting MMs from pyroptosis. Thus, our data suggest that MMs regulated by NLRP3 maintain the homeostasis of excitatory neurons.


Homeostasis , Macrophages , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Neurons , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Macrophages/metabolism , Neurons/metabolism , Mice, Inbred C57BL , Male , Choline O-Acetyltransferase/metabolism , Choline O-Acetyltransferase/genetics , Gastrointestinal Motility/physiology , Gastrointestinal Microbiome/physiology
2.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745325

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Bronchopulmonary Dysplasia , Hydrogen , Inflammation , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Signal Transduction , Toll-Like Receptor 4 , Female , Pregnancy , Lipopolysaccharides/toxicity , Hydrogen/pharmacology , Hydrogen/therapeutic use , Animals , Placenta/metabolism , Placenta/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction/drug effects , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Administration, Inhalation , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/prevention & control , Interleukin-6/metabolism , Interleukin-6/genetics , Rats, Sprague-Dawley , Disease Models, Animal
3.
Gut Microbes ; 16(1): 2351532, 2024.
Article En | MEDLINE | ID: mdl-38727248

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Gastrointestinal Microbiome , Lipopolysaccharides , NF-kappa B , Prevotella , Renal Insufficiency, Chronic , Signal Transduction , Toll-Like Receptor 4 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/pathology , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Humans , Male , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Prevotella/metabolism , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Osteogenesis/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Feces/microbiology , Inflammasomes/metabolism
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 354-361, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710518

Objective To prepare a monoclonal antibody (mAb) against mouse NOD-like receptor family pyrin domain-containing 3 (NLRP3) and assess its specificity. Methods A gene fragment encoding mouse NLRP3 exon3 (Ms-N3) was inserted into the vector p36-G3-throhFc to construct a recombinant plasmid named Ms-N3-throhFc. This plasmid was then transfected into HEK293F cells for eukaryotic expression. NLRP3-/- mice were immunized with Ms-N3 protein purified using a protein A chromatography column, and splenocytes from the immunized mice were fused with SP2/0 myeloma cells to generate hybridoma cells. Specific mAbs against murine NLRP3 from hybridoma cells were screened using ELISA and immunofluorescence assay(IFA). Results The Ms-N3-throhFc recombinant plasmid was successfully constructed and exhibited stable expression in HEK293F cells. Twelve hybridoma cell lines were initially screened using ELISA. IFA revealed that the mAb secreted by the 9-B8-3-2-C5 cell line specifically recognized the native form of mouse NLRP3 protein. The heavy and light chain subtypes of this mAb were identified as IgM and κ, respectively. Conclusion A monoclonal antibody against mouse NLRP3 has been successfully prepared.


Antibodies, Monoclonal , Hybridomas , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , Humans , Mice , HEK293 Cells , Hybridomas/immunology , Enzyme-Linked Immunosorbent Assay , Antibody Specificity/immunology , Female , Mice, Inbred BALB C
5.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Article En | MEDLINE | ID: mdl-38700011

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Disease Models, Animal , Ischemic Stroke , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Ischemic Stroke/physiopathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Male , Mice, Knockout , Mice , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/pathology , Sympathetic Nervous System/physiopathology , Myocardium/pathology , Myocardium/metabolism , Heart Diseases/etiology , Heart Diseases/physiopathology , Heart Diseases/pathology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/deficiency
6.
J Med Virol ; 96(5): e29643, 2024 May.
Article En | MEDLINE | ID: mdl-38695269

Severe pneumonia caused by respiratory viruses has become a major threat to humans, especially with the SARS-CoV-2 outbreak and epidemic. The aim of this study was to investigate the universal molecular mechanism of severe pneumonia induced by multiple respiratory viruses and to search for therapeutic strategies targeting this universal molecular mechanism. The common differential genes of four respiratory viruses, including respiratory syncytial virus (RSV), rhinovirus, influenza, and SARS-CoV-2, were screened by GEO database, and the hub gene was obtained by Sytohubba in Cytoscape. Then, the effect of hub genes on inflammasome and pyrodeath was investigated in the model of RSV infection in vitro and in vivo. Finally, through virtual screening, drugs targeting the hub gene were obtained, which could alleviate severe viral pneumonia in vitro and in vivo. The results showed that CMPK2 is one of the hub genes after infection by four respiratory viruses. CMPK2 activates the inflammasome by activating NLRP3, and promotes the releases of inflammatory factors interleukin (IL)-1ß and IL-18 to induce severe viral pneumonia. Z25 and Z08 can reduce the expression level of CMPK2 mRNA and protein, thereby inhibiting NLRP3 and alleviating the development of severe viral pneumonia. In conclusion, the inflammatory response mediated by CMPK2 is the common molecular mechanism of severe pneumonia induced by viral infection, and Z25 and Z08 can effectively alleviate viral infection and severe pneumonia through this mechanism.


Inflammasomes , Pyroptosis , Pyroptosis/drug effects , Humans , Animals , Inflammasomes/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Interleukin-18/metabolism , Interleukin-18/genetics , SARS-CoV-2 , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology
7.
Int Immunopharmacol ; 133: 112119, 2024 May 30.
Article En | MEDLINE | ID: mdl-38648715

The bacterial flagellum is an elongated filament that protrudes from the cell and is responsible for bacterial motility. It can also be a pathogen-associated molecular pattern (PAMP) that regulates the host immune response and is involved in bacterial pathogenicity. In contrast to motile bacteria, the Brucella flagellum does not serve a motile purpose. Instead, it plays a role in regulating Brucella virulence and the host's immune response, similar to other non-motile bacteria. The flagellin protein, FliK, plays a key role in assembly of the flagellum and also as a potential virulence factor involved in the regulation of bacterial virulence and pathogenicity. In this study, we generated a Brucella suis S2 flik gene deletion strain and its complemented strain and found that deletion of the flik gene has no significant effect on the main biological properties of Brucella, but significantly enhanced the inflammatory response induced by Brucella infection of RAW264.7 macrophages. Further experiments demonstrated that the FliK protein was able to inhibit LPS-induced cellular inflammatory responses by down-regulating the expression of MyD88 and NF-κB, and by decreasing p65 phosphorylation in the NF-κB pathway; it also inhibited the expression of NLRP3 and caspase-1 in the NLRP3 inflammasome pathway. In conclusion, our study suggests that Brucella FliK may act as a virulence factor involved in the regulation of Brucella pathogenicity and modulation of the host immune response.


Brucellosis , Flagellin , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Virulence Factors , Animals , Mice , RAW 264.7 Cells , Flagellin/metabolism , Virulence Factors/metabolism , Virulence Factors/genetics , Macrophages/immunology , Macrophages/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Brucellosis/immunology , Brucellosis/microbiology , Caspase 1/metabolism , Brucella suis/pathogenicity , Brucella suis/immunology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Inflammasomes/metabolism , Inflammasomes/immunology , NF-kappa B/metabolism , Inflammation/immunology , Lipopolysaccharides/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence
8.
Int Immunopharmacol ; 133: 112096, 2024 May 30.
Article En | MEDLINE | ID: mdl-38657496

Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. NOD-like receptor protein 3 (NLRP3) inflammation is involved in the development of myocarditis and is closely related to the form of cell death. Inhibiting pyroptosis mediated by NLRP3 inflammasome can reduce cardiac fibrosis, although its exact mechanism remains unknown. In this study, we induced Viral myocarditis (VMC) via infection of CVB3 to explore the relationship between pyroptosis and fibrosis. Our results showed that intraperitoneal injection of an NLRP3 inhibitor MCC950 or use of NLRP3-/- mice inhibited cardiac pyroptosis mediated by NLRP3 inflammasome in VMC. CXCL4 is a chemokine that has been reported to have pro-inflammatory and pro-fibrotic functions. In VMC, we further found that pyroptosis of Mouse myocardial fibroblasts (MCF) promoted the secretion of CXCL4 by activating Wnt/ß-Catenin signaling. Subsequently, the transcriptome sequencing data showed that CXCL4 could promote cardiac fibrosis by activating PI3K/AKT pathway. In summary, infection of CVB3 induced host oxidative stress to further activate the NLRP3 inflammasome and ultimately lead to heart pyroptosis, in which MCF secreted CXCL4 by activating Wnt/ß-Catenin signaling and CXCL4 participated in cardiac fibrosis by activating PI3K/AKT pathway. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.


Fibrosis , Mice, Inbred C57BL , Mice, Knockout , Myocarditis , NLR Family, Pyrin Domain-Containing 3 Protein , Platelet Factor 4 , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Myocarditis/metabolism , Platelet Factor 4/metabolism , Male , Humans , Myocardium/pathology , Myocardium/metabolism , Furans/pharmacology , Inflammasomes/metabolism , Fibroblasts/metabolism , Signal Transduction , Sulfones/pharmacology , Sulfonamides/pharmacology , Indenes
9.
Int Immunopharmacol ; 133: 112123, 2024 May 30.
Article En | MEDLINE | ID: mdl-38663314

The NOD-like receptor family protein 3 (NLRP3) inflammasome is a crucial complex for the host to establish inflammatory immune responses and plays vital roles in a series of disorders, including Alzheimer's disease and acute peritonitis. However, its regulatory mechanism remains largely unclear. Zinc finger antiviral protein (ZAP), also known as zinc finger CCCH-type antiviral protein 1 (ZC3HAV1), promotes viral RNA degradation and plays vital roles in host antiviral immune responses. However, the role of ZAP in inflammation, especially in NLRP3 activation, is unclear. Here, we show that ZAP interacts with NLRP3 and promotes NLRP3 oligomerization, thus facilitating NLRP3 inflammasome activation in peritoneal macrophages of C57BL/6 mice. The shorter isoform of ZAP (ZAPS) appears to play a greater role than the full-length isoform (ZAPL) in HEK293T cells. Congruously, Zap-deficient C57BL/6 mice may be less susceptible to alum-induced peritonitis and lipopolysaccharide-induced sepsis in vivo. Therefore, we propose that ZAP is a positive regulator of NLRP3 activation and a potential therapeutic target for NLRP3-related inflammatory disorders.


Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Peritonitis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , HEK293 Cells , Peritonitis/immunology , Peritonitis/chemically induced , Mice , Lipopolysaccharides/immunology , Mice, Knockout , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Sepsis/immunology , Sepsis/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Male , Protein Multimerization
10.
Sci Total Environ ; 929: 172653, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38649053

N,N-dimethylformamide (DMF) is a widely utilized chemical solvent with various industrial applications. Previous studies have indicated that the liver is the most susceptible target to DMF exposure, whereas the underlying mechanisms remain to be elucidated. This study aimed to investigate the role of NLRP3 inflammasome in DMF-induced liver injury in mice by using two NLRP3 inflammasome inhibitors, Nlrp3-/- mice, Nfe2l2-/- mice, and a macrophage-depleting agent. RNA sequencing revealed that endoplasmic reticulum (ER) stress and NLRP3 inflammasome-associated pathways were activated in the mouse liver after acute DMF exposure, which was validated by Western blotting. Interestingly, DMF-induced liver injury was effectively suppressed by two inflammasome inhibitors, MCC950 and Dapansutrile. In addition, knockout of Nlrp3 markedly attenuated DMF-induced liver injury without affecting the metabolism of DMF. Furthermore, silencing Nfe2l2 aggravated the liver injury and the NLRP3 inflammasome activation in mouse liver. Finally, the depletion of hepatic macrophages by clodronate liposomes significantly reduced the liver damage caused by DMF. These results suggest that NLRP3 inflammasome activation is the upstream molecular event in the development of acute liver injury induced by DMF.


Dimethylformamide , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Inflammasomes/metabolism , Chemical and Drug Induced Liver Injury , Liver/drug effects , Mice, Knockout , Endoplasmic Reticulum Stress/drug effects
11.
Zhen Ci Yan Jiu ; 49(4): 384-390, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649206

OBJECTIVES: To observe the effects on tyrosine hydroxylase (TH), α-synaptic nucleoprotein (α-syn), sirtuin 3 (Sirt3), NOD-like receptor 3 (NLRP3) and gasdermin-D (GSDMD) in the substantia nigra of midbrain after electroacupuncture (EA) at "Fengfu"(GV16), "Taichong" (LR3) and "Zusanli" (ST36) in rats of Parkinson's disease (PD), so as to explore the mechanism of EA in treatment of PD. METHODS: SD rats were randomly divided into control, model and EA groups, with 10 rats in each group. The PD model was established by injecting rotenone into the neck and back, lasting 28 days. In the EA group, EA was applied to GV16, LR3 and ST36, 30 min each time, once daily, consecutively for 28 days. The open-field test was adopted to detect the total distance of autonomic movement of rats, and the pole climbing test was used to detect the body coordination ability of rats. In the substania nigra of midbrain, the positive expression of TH was determined using immunohistochemistry, the mRNA expression levels of α - syn, Sirt3, NLRP3 and GSDMD were detected by quantitative real-time fluorescence PCR, and the protein expression levels of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and cysteinyl aspartate specific proteinase (Caspase)-1 were detected by Western blot. RESULTS: Compared with the control group, the total distance of autonomous movement was decreased (P<0.01) in the model group, and the score of pole climbing experiment was increased (P<0.01);in the midbrain substantia nigra the positive expression of TH was decreased (P<0.01);the mRNA expression level of Sirt3 was decreased (P<0.01), and those of α-syn, NLRP3 and GSDMD were increased (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 were increased (P<0.01). When compared with the model group, the total distance of autonomous movement in open field experiment was increased (P<0.01) in the EA group and the score of pole climbing experiment was lower (P<0.05);in the midbrain substantia nigra the positive expression of TH was increased (P<0.01);the mRNA expression level of Sirt3 in the midbrain substantia nigra was increased (P<0.01), and those of α-syn, NLRP3 and GSDMD were reduced (P<0.01);while the protein expression levels of NLRP3, ASC and Caspase-1 decreased (P<0.01, P<0.05). CONCLUSIONS: EA at "GV16" "LR3" and "ST36" can repair the neuronal injury, clear the abnormal accumulation of α-syn in the substania nigra of midbrain, and ameliorate mitochondrial damage in PD rats, which may be obtained by regulating Sirt3/NLRP3/GSDMD signaling pathway, so as to delay the occurrence and development of Parkinson's disease.


Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , Parkinson Disease , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 3 , Sirtuins , Substantia Nigra , Animals , Rats , Acupuncture Points , Mesencephalon/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Parkinson Disease/metabolism , Parkinson Disease/therapy , Parkinson Disease/genetics , Sirtuin 3/metabolism , Sirtuin 3/genetics , Substantia Nigra/metabolism
12.
Sci Adv ; 10(16): eadl4336, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38630829

Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.


CRISPR-Cas Systems , Gene Editing , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Gene Transfer Techniques , Genetic Therapy , Polymers/chemistry , Ribonucleoproteins/genetics
13.
Int J Immunopathol Pharmacol ; 38: 3946320241234736, 2024.
Article En | MEDLINE | ID: mdl-38652556

Sepsis, critical condition marked by severe organ dysfunction from uncontrolled infection, involves the endothelium significantly. Macrophages, through paracrine actions, play a vital role in sepsis, but their mechanisms in sepsis pathogenesis remain elusive. Objective: We aimed to explore how macrophage-derived exosomes with low miR-141 expression promote pyroptosis in endothelial cells (ECs). Exosomes from THP-1 cell supernatant were isolated and characterized. The effects of miR-141 mimic/inhibitor on apoptosis, proliferation, and invasion of Human Umbilical Vein Endothelial Cells (HUVECs) were assessed using flow cytometry, CCK-8, and transwell assays. Key pyroptosis-related proteins, including caspase-1, IL-18, IL-1ß, NLR Family Pyrin Domain Containing 3 (NLRP3), ASC, and cleaved-GSDMD, were analyzed via Western blot. The interaction between miR-141 and NLRP3 was studied using RNAhybrid v2.2 and dual-Luciferase reporter assays. The mRNA and protein level of NLRP3 after exosomal miR-141 inhibitor treatment was detected by qPCR and Western blot, respectively. Exosomes were successfully isolated. miR-141 mimic reduced cell death and pyroptosis-related protein expression in HUVECs, while the inhibitor had opposite effects, increasing cell death, and enhancing pyroptosis protein expression. Additionally, macrophage-derived exosomal miR-141 inhibitor increased cell death and pyroptosis-related proteins in HUVECs. miR-141 inhibits NLRP3 transcription. Macrophages facilitate sepsis progression by secreting miR-141 decreased exosomes to activate NLRP3-mediated pyroptosis in ECs, which could be a potentially valuable target of sepsis therapy.


Exosomes , Human Umbilical Vein Endothelial Cells , Macrophages , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Sepsis , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Humans , Exosomes/metabolism , Macrophages/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Sepsis/metabolism , Sepsis/pathology , THP-1 Cells , Disease Progression , Animals , Mice
14.
J Environ Pathol Toxicol Oncol ; 43(3): 69-80, 2024.
Article En | MEDLINE | ID: mdl-38608146

The present study explored that the effects and its possible mechanisms of ring finger protein 20 (RNF20) in Postoperative survival rate of liver cancer in clinical. All the serum samples were collected from our hospital. Quantitative polymerase chain reaction (PCR) and microarray analysis, and RNA pull down assay were used in this study. We found that the serum RNF20 mRNA expression level in patients with liver cancer were down-regulated. Postoperative survival rate of RNF20 high expression was higher than that of RNF20 low expression. Then, over-expression of RNF20 diminished liver cancer cell proliferation and metastasis. RNF20 reduced Warburg effect of liver cancer. RNF20 expression regulated NOD-like receptor protein 3 (NLRP3) expression and increased NLRP3 Ubiquitination. NLRP3 participated in the effects of RNF20 on cell proliferation, and not affected on Warburg effect of liver cancer. Our study demonstrated that the serum RNF20 expression level was down-regulated in liver cancer, and promoted postoperative survival rate. RNF20 can reduce cancer progression of liver cancer by NLRP3 signal pathway, suggesting that it may prove to be a potential therapeutic target for postoperative survival rate of liver cancer.


Liver Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Cell Proliferation , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitination
15.
Zhongguo Zhen Jiu ; 44(4): 441-448, 2024 Apr 12.
Article En, Zh | MEDLINE | ID: mdl-38621732

OBJECTIVES: To observe the effects of electroacupuncture (EA) with "intestinal disease prescription" on the intestinal mucosal barrier and NLRP3 inflammasome in rats with dextran sulfate sodium (DSS)-induced acute ulcerative colitis (UC), and explore the underlying mechanism of EA with "intestinal disease prescription" for the treatment of UC. METHODS: Thirty-two healthy male SPF-grade SD rats were randomly divided into a blank group, a model group, a medication group, and an EA group, with 8 rats in each group. Except for the blank group, the UC model was established by administering 5% DSS solution for 7 days. After modeling, the rats in the medication group were treated with mesalazine suspension (200 mg/kg) by gavage, while the rats in the EA group were treated with acupuncture at bilateral "Tianshu" (ST 25), "Shangjuxu" (ST 37) and "Zhongwan" (CV 12), with the ipsilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37) connected to the electrodes of the EA instrument, using disperse-dense wave, with a frequency of 10 Hz/50 Hz, and each intervention lasted for 20 minutes. Both interventions were performed once daily for 3 days. The general conditions of rats were observed daily. After intervention, the disease activity index (DAI) score was calculated; colon tissue morphology was observed using HE staining; serum levels of pro-inflammatory cytokines (interleukin [IL]-18, IL-1ß) were measured by ELISA; protein expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in colon tissues was detected by Western blot; positive expression of zonula occludens-1 (ZO-1) and Occludin in colon tissues was examined by immunofluorescence. RESULTS: Compared with the blank group, the rats in the model group exhibited poor general conditions, slow body weight gain, shortened colon length (P<0.01), increased DAI score and spleen index (P<0.01), elevated serum IL-18 and IL-1ß levels, and increased protein expression of NLRP3, ASC, and Caspase-1 in colon tissues (P<0.01), along with decreased positive expression of ZO-1 and Occludin in colon tissues (P<0.01). Compared with the model group, the rats in the medication group and the EA group exhibited improved general conditions, accelerated body weight gain, increased colon length (P<0.05), reduced DAI scores and spleen indexes (P<0.05), decreased serum IL-18 and IL-1ß levels, and lower protein expression of NLRP3, ASC and Caspase-1 in colon tissues (P<0.05), as well as increased positive expression of ZO-1 and Occludin in colon tissues (P<0.05). There were no significant differences in the above indexes between the medication group and the EA group (P>0.05). Compared with the blank group, the rats in the model group exhibited disrupted colon mucosal morphology, disordered gland arrangement, and atrophy of crypts, along with significant inflammatory cell infiltration. Compared with the model group, the rats in both the medication group and the EA group showed relatively intact colon mucosal morphology, with restored and improved gland and crypt structures, and reduced inflammatory cell infiltration. CONCLUSIONS: EA with "intestinal disease prescription" has a significant therapeutic effect on DSS-induced UC, possibly by regulating the expression of NLRP3 inflammasome and proteins related to the intestinal mucosal barrier, thereby alleviating symptoms of ulcerative colitis.


Colitis, Ulcerative , Electroacupuncture , Rats , Male , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/therapy , Inflammasomes/adverse effects , Interleukin-18 , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Occludin , Body Weight , Caspases/adverse effects
16.
Zhongguo Zhong Yao Za Zhi ; 49(4): 902-911, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621897

Alzheimer's disease(AD), vascular dementia(VD), and traumatic brain injury(TBI) are more common cognitive impairment diseases characterized by high disability and mortality rates, imposing a heavy burden on individuals and their families. Although AD, VD, and TBI have different specific mechanisms, their pathogenesis is closely related to the nucleotide-binding oligome-rization domain-like receptor protein 3(NLRP3). The NLRP3 inflammasome is involved in neuroinflammatory responses, mediating microglial polarization, regulating the reduction of amyloid ß-protein(Aß) deposition, neurofibrillary tangles(NFTs) formation, autophagy regulation, and maintaining brain homeostasis, and synaptic stability, thereby contributing to the development of AD, VD, and TBI. Previous studies have shown that traditional Chinese medicine(TCM) can alleviate neuroinflammation, promote microglial polarization towards the M2 phenotype, reduce Aß deposition and NFTs formation, regulate autophagy, and maintain brain homeostasis by intervening in NLRP3 inflammasome, hence exerting a role in preventing and treating cognitive impairment-related diseases, reducing psychological and economic pressure on patients, and improving their quality of life. Therefore, this article elucidated the role of NLRP3 inflammasome in AD, VS, and TBI, and provided a detailed summary of the latest research results on TCM intervention in NLRP3 inflammasome for the prevention and treatment of these diseases, aiming to inherit the essence of TCM and provide references and foundations for clinical prevention and treatment of cognitive impairment-related diseases with TCM. Meanwhile, this also offers insights and directions for further research in TCM for the prevention and treatment of cognitive impairment-related diseases.


Alzheimer Disease , Cognitive Dysfunction , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amyloid beta-Peptides/metabolism , Medicine, Chinese Traditional , Quality of Life , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control
17.
Zhongguo Zhong Yao Za Zhi ; 49(4): 894-901, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621896

Heart failure is characterized by high incidence and mortality rates, and the search for effective treatment strategies for heart failure and the improvement of clinical outcomes have always been important research directions. Imbalanced inflammation has been proven to be one of the critical pathological factors in heart failure, positively correlated with adverse events such as impaired cardiac function and myocardial fibrosis. In recent years, studies have confirmed that the activation of the NOD-like receptor thermal protein domain-associated protein 3(NLRP3) inflammasome plays a common regulatory role in the inflammation imbalance induced by various factors in heart failure. Moreover, certain traditional Chinese medicine(TCM) and active components can significantly inhibit the activation of the NLRP3 inflammasome, thereby improving heart failure. This article first overviewed the basic information about the NLRP3 inflammasome, summarized the regulatory mechanisms of the NLRP3 inflammasome in heart failure induced by various factors, introduced recent research progress on TCM and active components that inhibited the NLRP3 inflammasome to improve heart failure, aiming to provide references for innovative drug research in the field of integrated Chinese and western medicine for the prevention and treatment of heart failure.


Heart Failure , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Medicine, Chinese Traditional , Heart Failure/drug therapy , Inflammation
18.
Exp Cell Res ; 438(1): 114047, 2024 May 01.
Article En | MEDLINE | ID: mdl-38631546

BACKGROUND: Programmed death ligand-1(PD-L1) has been postulated to play a crucial role in the regulation of barrier functions of the vascular endothelium, yet how this novel molecule mediates dysfunction in endothelial cells (ECs) during acute lung injury (ALI) remains largely unknown. METHODS: PD-L1 siRNA and plasmids were synthesized and applied respectively to down- or up-regulate PD-L1 expression in human lung microvascular endothelial cells (HMVECs). RNA sequencing was used to explore the differentially expressed genes following PD-L1 overexpression. The expression levels of tight junction proteins (ZO-1 and occludin) and the signaling pathways of NLRP-3/caspase-1/pyroptosis were analyzed. A mouse model of indirect ALI was established through hemorrhagic shock (HEM) followed by cecal ligation and puncture (CLP), enabling further investigation into the effects of intravenous delivery of PD-L1 siRNA. RESULTS: A total of 1502 differentially expressed genes were identified, comprising 532 down-regulated and 970 up-regulated genes in ECs exhibiting PD-L1overexpression. Enrichment of PD-L1-correlated genes were observed in the NOD-like receptor signaling pathway and the TNF signaling pathway. Western blot assays confirmed that PD-L1 overexpression elevated the expression of NLRP3, cleaved-caspase-1, ASC and GSDMD, and concurrently diminished the expression of ZO-1 and occludin. This overexpression also enhanced mitochondrial oxidative phosphorylation and mitochondrial reactive oxygen species (mtROS) production. Interestingly, mitigating mitochondrial dysfunction with mitoQ partially countered the adverse effects of PD-L1 on the functionality of ECs. Furthermore, intravenous administration of PD-L1 siRNA effectively inhibited the activation of the NLRP3 inflammasome and pyroptosis in pulmonary ECs, subsequently ameliorating lung injury in HEM/CLP mice. CONCLUSION: PD-L1-mediated activation of the inflammasome contributes significantly to the disruption of tight junction and induction of pyroptosis in ECs, where oxidative stress associated with mitochondrial dysfunction serves as a pivotal mechanism underpinning these effects.


B7-H1 Antigen , Caspase 1 , Endothelium, Vascular , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Animals , Humans , Male , Mice , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Caspase 1/metabolism , Caspase 1/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/genetics , Reactive Oxygen Species/metabolism
19.
J Virol ; 98(5): e0041124, 2024 May 14.
Article En | MEDLINE | ID: mdl-38567952

Influenza A virus infection activates the NLRP3 inflammasome, a multiprotein signaling complex responsible for the proteolytic activation and release of the proinflammatory cytokine IL-1ß from monocytes and macrophages. Some influenza A virus (IAV) strains encode a short 90-amino acid peptide (PB1-F2) on an alternative open reading frame of segment 2, with immunomodulatory activity. We recently demonstrated that contemporary IAV PB1-F2 inhibits the activation of NLRP3, potentially by NEK7-dependent activation. PB1-F2 binds to NLRP3 with its C-terminal 50 amino acids, but the exact binding motif was unknown. On the NLRP3 side, the interface is formed through the leucine-rich-repeat (LRR) domain, potentially in conjunction with the pyrin domain. Here, we took advantage of PB1-F2 sequences from IAV strains with either weak or strong NLRP3 interaction. Sequence comparison and structure prediction using Alphafold2 identified a short four amino acid sequence motif (TQGS) in PB1-F2 that defines NLRP3-LRR binding. Conversion of this motif to that of the non-binding PB1-F2 suffices to lose inhibition of NLRP3 dependent IL-1ß release. The TQGS motif further alters the subcellular localization of PB1-F2 and its colocalization with NLRP3 LRR and pyrin domain. Structural predictions suggest the establishment of additional hydrogen bonds between the C-terminus of PB1-F2 and the LRR domain of NLRP3, with two hydrogen bonds connecting to threonine and glutamine of the TQGS motif. Phylogenetic data show that the identified NLRP3 interaction motif in PB1-F2 is widely conserved among recent IAV-infecting humans. Our data explain at a molecular level the specificity of NLRP3 inhibition by influenza A virus. IMPORTANCE: Influenza A virus infection is accompanied by a strong inflammatory response and high fever. The human immune system facilitates the swift clearance of the virus with this response. An essential signal protein in the proinflammatory host response is IL-1b. It is released from inflammatory macrophages, and its production and secretion depend on the function of NLRP3. We had previously shown that influenza A virus blocks NLRP3 activation by the expression of a viral inhibitor, PB1-F2. Here, we demonstrate how this short peptide binds to NLRP3 and provide evidence that a four amino acid stretch in PB1-F2 is necessary and sufficient to mediate this binding. Our data identify a new virus-host interface required to block one signaling path of the innate host response against influenza A virus.


Amino Acid Motifs , Influenza A virus , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Binding , Viral Proteins , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , HEK293 Cells , Influenza, Human/virology , Influenza, Human/immunology , Amino Acid Sequence
20.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38612539

The most critical forms of coronavirus disease 2019 (COVID-19) are associated with excessive activation of the inflammasome. Despite the COVID-19 impact on public health, we still do not fully understand the mechanisms by which the inflammatory response influences disease prognosis. Accordingly, we aimed to elucidate the role of polymorphisms in the key genes of the formation and signaling of the inflammasome as biomarkers of COVID-19 severity. For this purpose, a large and well-defined cohort of 377 COVID-19 patients with mild (n = 72), moderate (n = 84), severe (n = 100), and critical (n = 121) infections were included. A total of 24 polymorphisms located in inflammasome-related genes (NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, IL18, NFKB1, ATG16L1, and MIF) were genotyped in all of the patients and in the 192 healthy controls (HCs) (who were without COVID-19 at the time of and before the study) by RT-qPCR. Our results showed that patients with mild, moderate, severe, and critical COVID-19 presented similar allelic and genotypic distribution in all the variants studied. No statistically significant differences in the haplotypic distribution of NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, and ATG16L1 were observed between COVID-19 patients, who were stratified by disease severity. Each stratified group of patients presented a similar genetic distribution to the HCs. In conclusion, our results suggest that the inflammasome polymorphisms studied are not associated with the worsening of COVID-19.


COVID-19 , Inflammasomes , Humans , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , COVID-19/genetics , Biomarkers , Caspase 1/genetics , Polymorphism, Genetic , Neoplasm Proteins , CARD Signaling Adaptor Proteins/genetics
...